

La Jolla Commons Phase II Office Tower

Alyssa Stangl | Structural Option Faculty Advisor | Dr. Hanagan AE Senior Thesis | April 14, 2014

San Diego, California

La Jolla Commons Office Tower

- Building Introduction
- Design Scenario and Proposed Solution
- Gravity System
 - Preliminary Vibrations Analysis
 - Layout
 - Beam and Column Designs
 - Final Vibrations Analysis
- Lateral System Design
 - Layout
 - Moment Frames
 - Shear Walls
- Construction Breadth
- Conclusions

Preliminary Vibrations Analysis

- Long beam spans
- Vibrations due to human excitation
- Multiple deck and beam spacing configurations tested
- **Design Selection:**
- 1.5VLR20
- 7.5' 8' beam spacing

Source: The Preliminary Assessment for Walking-Induced Vibrations in Office Environments by Dr. Linda Hanagan and Taehoo Kim

- 4.25" LW Topping

Deck Configuration Concrete Strength Steel Grade Deck Type Topping (in) LW/NW? Total Slab Thickness (in Class from Table 1 Select C1 from Table 2 Select C2 from Table 4 Evaluate C1 + C2 C1 + C2 < 0.5?

for Vibration Control		
	3000 psi	
	50	
	1.5VLR20	
	4.25	
	LW	
)	5.75	
	4	
	0.413	
	0.019	
	0.432	
	GOOD	

La Jolla Commons Office Tower

- Building Introduction
- Design Scenario and Proposed Solution
- Gravity System
 - Preliminary Vibrations Analysis
 - Layout
 - Beam and Column Designs \bullet
 - Final Vibrations Analysis
- Lateral System Design
 - Layout \bullet
 - Moment Frames
 - Shear Walls
- Construction Breadth
- Conclusions

Long Direction
Short Directi

Gravity System Layout

Which direction to span infill beams?

Long Direction Selected

Infill Beam Comparison			
	Steel Weight (lbs)	Number of Members	
on	212936	155	
on	179608	225	

La Jolla Commons Office Tower

- Building Introduction
- Design Scenario and Proposed Solution
- Gravity System
 - Preliminary Vibrations Analysis
 - Layout
 - Beam and Column Designs
 - Final Vibrations Analysis
- Lateral System Design
 - Layout
 - Moment Frames
 - Shear Walls
- Construction Breadth
- Conclusions

- 2009
 - 1.13 time modifier 3% Inflation 105.1 location modifier
- Structural Steel Framing 36% of cost
- Concrete on Metal Deck 12% of cost
- \$ 65.05 per SF

Steel System Cost

Based on cost information from RS Means

Total Steel Structure Cost (2009 RS Means) Item Concrete on Metal Deck Structural Steel Framing Shear Walls Foundation Walls Lower Level Concrete Slabs Lower Level Concrete Colun Mat Foundation **Total Cost Final Modified Cost**

	Cost	
	\$ 3,049,983.64	
	\$ 9,052,267.61	
	\$ 4,309,712.97	
	\$ 1,929,048.98	
	\$ 2,796,418.47	
nns	\$ 198,415.62	
	\$ 4,054,749.44	
	\$ 25,390,596.74	
	\$ 30,072,276.51	